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Abstract 

The results of au cxtcnsivc study of B-meson propcrtics in quenched lat- 

tice QCD are presented. The studies are carried out in the static quark limit 

where the b-quark is taken to bc iufiuitcly massive. Our computations rely on 

a multistate smearing metllod iutroduccd previously, with smearing functions 

generated from a relativistic lattice quark model. Systematic errors arising 

from excited state contamination. finite volume cffccts. and the chiral excrapo- 

lation for the light quarks are estimated. 11’e obtain continuum results for the 

mass splitting :\ln, - :\fs. = 86 f 12(stut) ‘a(syst) ,\leV. the ratio of decay 

constants fo,/fou = 1.22 f O.O4(stut) f 0.02( syst). For the B-meson decay 

constant we separately exhibit the sizable unccrtaintics in the extrapolation 

to the continuum limit (a - 0) and higher order perturbative matching. We 

obtain fo = 188f 23(stat) f 15(qst) ?r(ettrnp) f lJ(pett) MeV. 

4s Weretod by UnlVOrSitlOs Rereerch Association Inc. under contract with the United States Department of Energy 



1 Introduction 

Heavy-light mesons are ideal systems for lattice QCD studies. For hadrons that contain a 

single heavy quark, the dynamics of QCD simplifies as rn~ - 00. In this limit, the heavy 

quark is on shell and at rest relative to the hadron[l] and the QCD dynamics becomes 

independent of ng[2]. Heavy quark mass dependence can be extracted analytically to 

produce-an effective action for a static quark and the remaining light degrees of freedom(3,4]. 

In the continuum, the resulting heavy quark effective theory (HQET) makes transparent 

the symmetry[S] and scaling relations between systems which differ by heavy quark spin 

or flavor [S, 6, 71. Furthermore for finite heavy quark masses, the effective action can be 

improved order by order in l/m*. The mg --) 00 limit may also provide other insights into 

QCD dynamics. In particular, heavy-light mesons are physical systems with a single light 

valence quark and fully relativistic QCD dynamics. It is likely that much can be learned 

about constituent quark ideas in this simple setting[8]. 

These theoretical developments have immediate physical applications for B physics. 

Since the b quark mass is significantly heavier than the other mass scales (the QCD scale 

and the light quarks masses) which enter into the dynamics of B hadrons, it is likely to be 

a good approximation to treat the b quark in the rn~ + 00 limit within B hadrons. 

Recent developments in lattice gauge theory have led to the possibility of calculating 

the masses and decay constants of B, (q=u, d, s) mesons from first principles (QCD) with 

enough accuracy to be of both phenomenological and theoretical interest. In particular, we 

consider the mass difference MB, - MB., the decay constant f,yu,d and the ratio f&/f&. 
We will only consider the lattice action appropriate to the static limit (mb + 00) and hence 

all the results reported have corrections of order Aoco/rna. A variety of other methods have 

been developed to study B mesons on the lattice. Methods for treating the b quark using 

nonrelativistic actions[9], a non-zero velocity formulation(lO], and a generalization of the 

usual Wilson action which is not constrained to quark masses less than the inverse lattice 

spacing[ll] are being actively pursued. 

The present study encompasses a systematic analysis of data for MB and f~ at four 

different lattice spacings a (with associated beta values ,fY = 5.7,5.9,6.1, and 6.3) and a 

variety of physical volumes (in lattice units 123, 163, and 203) for one fixed spacing (/3 = 5.9). 

For each case above at least four light quark mass values (kappa values corresponding to 
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pion maSses in the range 300 - 800 MeV) were studied. A uniform and consistent fitting 

scheme was used in all cases. This is particularly important for an accurate extrapolation 

to result9 at physical light quark masses (6 = ri,,d and n = K,). and for assessing the 

a-dependence of the results. 

In the static approximation, the heavy quark propagator is reduced to a straight timelike 

Wilson line, making it possible to calculate correlators of spatially smeared Qq operators 

without having to compute light quark propagators from smeared sources. Because of this 

simplifying feature, the heavy-light meson system is an ideal place to develop sophisticated 

operator smearing techniques. Such techniques are indispensable for the accurate calculation 

of fs and other B-meson properties. Until recently, most such calculations have relied on a 

more-or-less ad hoc choice of smearing functions (e.g. wall9[12], cubes [13], or exponentials 

[14], or Gaussian9 [14)). 

In the present study, we have applied a multistate smearing method introduced pre- 

viously in Ref. [16]. This analysis provides some significant improvements over previous 

investigations. First, we have made a serious effort to construct smearing functions which 

closely resemble the actual Coulomb gauge wave functions of the valence &q system as mea- 

sured on the lattice. As reported in a previous paper [17], the heavy-light wavefunctions 

from lattice QCD are reproduced with remarkable accuracy by a simple relativistic quark 

model (RQM) Hamiltonian which contains the static QCD potential extracted from Wilson 

lines in Coulomb gauge. In addition to being an interesting statement about QCD dynamics, 

the success of the RQM has a practical consequence which we will exploit here. The RQ?vi 

Hamiltonian provides a simple and precise way of constructing orthonormal sets of realistic 

smearing functions for lattice heavy-light calculations. For each value of p and lattice size. 

the static Wilson potential is calculated from the gauge configurations and used in the RQN 

to generate heavy-light smearing functions. The only tuneable parameter in this procedure 

is the light-quark constituent mass parameter p in the kinetic term of the RQM Hamilto- 

man. In practice, this parameter was initially selected by measuring the lattice QCD ground 

state wavefunction and adjusting p to give the best fit for the RQLf ground state. In some 

cases, after an initial multistate fit to the heavy-light propagators, it was found useful to 

iterate the procedure with a more finely tuned value of the constituent quark mass CL, using 

the more accurate wave functions obtained from the multistate fit. 

In addition to this method for constructing smearing functions, another important inno- 
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vation introduced in the present study is the fitting procedure used to extract information 

from the heavy-light correlators. Starting with the wavefunctions from the first M S-wave 

states of the RQM, it is relatively easy to construct the entire M x M matrix of correlators 

among the corresponding smeared Qq operators, as well as ‘the “smeared-local” correla- 

tors between each of these operators and the local Qq source. Along with the local-local 

correlator, these form an (M + 1) x (M + 1) matrix. This matrix contains far more infor- 

mation than just the smeared-smeared and smeared-local correlators of any single smearing 

function. In particular, the matrix contains information about excited states, which, when 

properly exploited, allow9 an accurate extraction of ground state properties even at very 

short time separations, where excited state contributions are still large. The method we 

introduce to accomplish this employs a x2 minimization procedure to simultaneously fit the 

(M+l) x(M+l) matrix of correlators to a sum of M exponential (pole) terms, representing 

the contribution of the M lowest lying heavy-light eigenstates. (In all fits, we exclude the 

local-local correlator, which, at short time separations, is not well fit by a few low lying 

states.) The matrix coefficient (residue) of each pole term factorizes and can be written 

in terms of an M + 1 component vector whose entries represent the vacuum-to-eigenstate 

matrix element of each smeared operator. In practice we have found an M = 2 fit to yield 

fairly accurate results for ground state properties. For all of the fits used, the x2 per degree 

of freedom was less than 1.3. The multipararneter fits were carried out using the CERNLIB 

minimization routine MINUIT. 

The improved control over systematic errors gained from the multistate fitting method 

allows us to better address a number of issues. In particular the dependence of heavy-light 

meson parameters on both the light quark mass and the lattice spacing are examined in 

detail.. One of the difficulties with previous analyses which prevented accurate chiral and 

a -) 0 extrapolations was in the arbitrariness of the smearing procedure. It is clear that any 

ad hoc smearing function will have a substantial overlap with excited states. Typically one 

tries to optimize the smearing function (e.g. by adjusting the size of the cube) and to go far 

enough out in time that excited states have died away. The approximate equality of smeared- 

smeared and smeared-local effective masses, combined with some indication of an effective 

mass plateau, are the main criteria of success in this procedure. Unfortunately, the procedure 

is somewhat subjective and it is difficult to rule out large systematic errors due to excited 

state contamination. An attempt to reduce these errors by extracting results from larger 

4 



time separations leads to a rapid deterioration of statistics. Moreover, because of the well- 

known signal-to-noise difficulty for the heavy-light propagator in the static approximation, 

(15, 161, the problem of isolating the ground state becomes more difficult at smaller lattice 

spacing. As a result, extrapolation to a = 0 is particularly problematic. Furthermore, 

use of any fixed smearing function at different light quark masses introduces a significant 

systematic error in the extracted kappa dependence. This is important in the determination 

of results for f~,/f~. and MB, - ME.. The multistate fitting procedure effectively deals 

with these difficulties, greatly reducing our errors. 

Extrapolating to the continuum limit (a = 0) we obtain the ratio fs,/fs. = 1.22 f 

.04(stat) f .02(syst) and MB, - MB, = 86 f 12(stat) zi(syst)MeV for the mass difference. 

For these quantities, only a slight dependence on the lattice spacing is observed, and the 

systematic errors associated with the a + 0 extrapolation (included in the above) are small. 

The situation for the decay constant is more complicated. We find a significant lattice 

spacing dependence for the ground-state pseudoscalar decay constant f~. The results for 

the four P values are consistent with either a linear or quadratic dependence on the lattice 

spacing a. The linearly extrapolated result in the a + 0 limit is fB = 188 f 23 f 15 MeV 

This result is notably smaller than previous estimates of f~ in the static approximation. 

The primary reason for this is the a --$ 0 extrapolation. The quadratic extrapolated result 

in the a + 0 limit is f~ = 214 f 13 f 17MeV. This fit reflects the fact that our results at 

P = 6.3 are not inconsistent with those of Ref. [12],[18],[19] (the latter two results using 

a clover action for the light quarks). In both cases, the first error is statistical while the 

second includes systematic errors, which we discuss in Section 5. Our final result for the &,d 

meson decay constant (in the heavy quark limit) fr, = 188&23(stat)f15(syst) +i’(extrap)f 

14(pert) MeV explicitly separates out this theoretical uncertainity associated with the a + 

0 extrapolation as well as our estimate of the uncertainity associated with higher order 

perturbative matching corrections. 

We will give a complete discussion of the perturbative matching of lattice to continuum 

results in Section 2. We include a discussion of the heavy quark mass renormalization in 

relation to the residual mass parameter (.K = MB - mb(quark)) of HQET. In Section 3 we 

discuss our analysis procedure. The details of the multistate smearing technique and the 

construction of the smearing functions from a relativistic quark model (RQM) are presented. 

In Section 4 the numerical lattice results at each 0 are presented. The statistical and fitting 
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errors associated with our final physical results are determined. The light meson results used 

to set light quark masses are contained in Appendix A. The discussion of systematic errors 

associated with excited state contamination, finite volume, nonzero light quark masses, 

scale uncertainities, and the extrapolation to zero lattice spacing are all discussed in Section 

5. A study of the time evolution of the wavefunctions for heavy-light states is presented 

in Appendix B. These results provide an independent check that our multistate smearing 

analysis has removed excited state contamination. In the Section 6 we present our final 

results, compare them with other recent calculations, and discuss upcoming studies. 
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2 Perturbative Matching 

2.1 Extracting Properties of Heavy-Light Mesons from LQCD 

In this section, we will focus on short-distance corrections to the results obtained from 

lattice QCD. These corrections are common to both traditional techniques for extracting 

meson properties and to the multistate smearing method employed here. Explanation of 

the details of the multistate smearing method are deferred to the next section. 

The corrections to the matrix elements of time component of the heavy-light axial 

current, &s(n), are computed by demanding that the ratio of the current renormalized 

with some continuum regularization scheme and the lattice-regularized current be unity. To 

be a little more precise, one computes this ratio, 2, using some matrix element, and from 

then on one multiplies any result obtained using the lattice-regularized current by 2. The 

states used to determine Z can be chosen for calculational convenience since the ratio is 

independent of the choice of states, Although there is no choice of states for which the 

numerator and denominator of the ratio are separately calculable, because the operators 

only differ at scales on the order of the cutoffs of the two regularizations, and at these scales 

QCD is perturbative, the ratio can be calculated in perturbation theory. 

The procedure is actually slightly more complicated than explained in the preceding 

paragraph. Because the lattice QCD calculations are done in the heavy quark effective 

theory (a theory which does not have the same particle content as the full standard model), 

it is necessary to compute an additional ratio, Zcont. This is the ratio of the axial current 

renormalized at the scale rni in the standard model to the axial current renormalized at a 

scale q* in the heavy quark effective theory. 

The calculations of Z and Zcont are the subject of the following two subsections. An 

analysis of the heavy quark mass renormalization follows thereafter. In the last subsection, 

we summarize the various constants used in this study. 

2.2 Calculation of 2 

The ratio Z introduced above was calculated son& time ago, but there is substantial un- 

certainty in these calculations. Tadpole-improved perturbation theory, as formulated by 

Lepage and Mackenzie [20], promises to reduce these uncertainties below the ten per cent 

level at one-loop. The application of the tadpole-improvement program to heavy quark 
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effective theory has recently been discussed by Bernard [21], and calculations have been 

performed by Hernandez and Hill (22). In this subsection we summarize the calculation of Z 

within the framework of tadpole-improved perturbation theory. Hern&ndez and Hill consid- 

ered both the zero-separation and unit-separation point-split heavy-light axial currents. We 

will restrict our attention here to the zero-separation heavy-light current used in our Monte 

Carlo calculations. We wilI further restrict our attention to the case of Wilson fermions with 

r= 1. The use of tadpole-improved perturbation theory results in a substantial reduction 

in our best estimate of the central value and uncertainty for f~. 

The root of the tadpole-improvement program is a nonperturbative renormalization of 

the basic operators in the lattice action. These redefinitions absorb the large renormaliza- 

tions arising from lattice tadpole graphs. A related additional part of the Lepage-Mackenzie 

prescription is the use of a larger perturbative coupling. If one uses /3 to determine the per- 

turbative coupling, alat, one-loop perturbative corrections are consistently underestimated. 

These perturbation theory problems are due to the fact that alat is a poor choice of expan- 

sion parameter. For example at an inverse lattice spacing of 2 GeV, the tadpole-improved 

expansion parameter is av = 0.16, which is twice as large as alar. Lepage and Mackenzie 

argue that the best way to arrive at ov is from a non-perturbative lattice determination of 

a perturbatively calculable quantity, such as the gauge field plaquette expectation value. 

Using tadpole-improvement of the Wilson action for quarks on the lattice as a guide, 

one can perform tadpole-improvement of the heavy quark action, and this has been done in 

Ref. [21]. Instead of discretizing 

s= J $z b’ (ia + gA,-,) b 

as 

it is discretized as 

S = ia En b’(n) (b(n) - lJo(n-R)‘b(.-6))) 

. Stadpole-improved = ra 3 En b+(n) (b(n) - -$G.,(n-b)tb(n-(l)), 

where ug is defined as 

uo z (~TrLiplaq)‘14. 

The combination V,(r)/ uo more closely corresponds to the continuum field (1 + iagA,,(z)), 

than does U,,(z) itself. With the tadpole-improved action, there is an additional factor of 
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l/u0 for each gauge field link in the product. Thus the Green’s function of two heavy-light 

currents separated by no lattice spacings in the time direction satisfies, 

GB(~o) 
[GB(~O)I tadpole-improved = no 

uo 

The B meson decay constant f~ is usually extracted from numerical simulations by 

fitting Gs(no) to 
Ukwe)2 

2mB 
exp(-Cnoa] 

Thus we see that the tadpole improvement procedure has no effect on the fitted value of 

fs. Its only effect is the change 
In uo 

C+C+--, 
a 

that is, a linearly divergent mass renormalization. 

So far we have seen that tadpole improvement does not affect the extraction of fn as 

it is generally done in lattice Monte Carlo calculations. However we must still take into 

account the effect of tadpole improvement of the light quark action, and this will involve 

some additional factors. 

As conventionally defined in lattice Monte Carlo calculations the lattice operator 5: 

involved in calculating f~ is renormalized by a factor GZ, where KC is the critical value 

of the hopping parameter for the light quarks. The tree level value of nc is l/8. Lepage and 

Mackenzie advocate a reorganization of perturbation theory such that a factor of & is 

included in Z and the renormalizing factor becomes Z/2. 

Let us see what this factor does at one-loop. Calculations of Z have been carried out to 

one-loop order and the result is of the form, 

Z = 1 + E]J 29(q) + i ln(q-a)*] 

This definition of g(q) (and similar ones for h(q),j(q), and k(q) which will be introduced 

below) follow the definitions in Ref. [22]. A one-loop calculation of 81~c has been performed, 

and the result is expressible as 

1 
= 

8s 
1 QS 

c, one-loop -3n / 
$W 

The relationship between Z and Z is 
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The one-loop expression for Z is therefore 

j(n) = s(q) + h(q)/2 

where 

Z = 1 + %[I C&$(q) + i ln(q’a)2] 

We continue with the application of the Lepage-Mackenzie prescription to determine the 

A-value of the coupling and the scale q- at which it is evaluated. The prescription for fixing 

the value of the coupling, tyv is to extract it from a non-perturbative calculation of the 

1 x 1 Wilson loop (i.e., the expectation value of the plaquette, Uplaq). Once the coupling 

is known at some scale (alternatively, once the value A” is known), it can be run to any 

other scale. The formula which relates av to the non-perturbatively determined (lattice 

Monte Carlo) plaquette expectation value is, 

- ln(~TrUplaq) = 3 4nov(3.41/a) [1 1 crv(3.41/a)(1.19 + 0.025nf) + O(&)]. 

The coefficient of nf is the one appropriate for Wilson fermions with r = 1. In the quenched 

approximation, nf = 0. AV is determined through 

w(q) = [P01n(q2/A$) + (A/l10)lnln(q2/A$))]-‘. 

It remains to fix the scale q* at which cxV(q) is evaluated in the expression for Z. 

Lepage and Mackenzie propose to do that by calculating the expectation value of In q* in 

the one-loop perturbative lattice correction. The formulae determining this scale are: 

Y E 
J 

d4q i(q) = -13.93 

(ln(qa)2) E $ / d4q j(q) ln(q2a2) = E 

(1) 

(2) 

q’a I exp[(ln(qa)*)/2] = 2.18 . (3) 

Hernandez and Hill quote the errors on the numerically evaluated values of Y and Y In < 

q2 > as order 1 in the last decimal place. 

Using the two-loop formula for the running of QV with zero quark flavors one obtains 

av(q*). The explicit dependence on the value of a-’ drops out of the ratio q’/Av. Hence, 

the only way lattice Monte Carlo results have been used so far is for the expectation value 

of the plaquette; the determination of a -’ has not yet entered. The results for Z at various 

values of fl are summarized in Table 1. 
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This completes our calculation of 2. It remains to multiply 2 by the continuum running 

and matching factor, Zcont. We leave this for the following subsection. 

2.3 Continuum Running and Matching Factor 

For consistency, the one loop computation of 2 should be combined with a two loop running 

in the continuum effective theory and a further one loop matching between the continuum 

effective and full theories. This produces the continuum running and matching factor Zcont 

which multiplies 2 to give the full perturbative correction. It will turn out that the lattice 

to continuum matching factor 2 is most significant, while Zcont produces only a small 

additional change. 

In the previous section, the coupling av was determined in a no-flavor (quenched) lattice 

theory. We must now match onto a four-flavor (or five-flavor depending on the value of q*) 

continuum theory. In order for the infrared behavior of lattice and continuum theories to 

match exactly, we could use a continuum coupling whose value is equal to av(q*) (although 

differences between couplings are higher order effects). This implies we should choose a 

contmuum scale qcont =cordhzi to acont(Qcont) = av(q*). In practice we ignore this 

criterion and simply set qcont = q*, using cw(q’) everywhere in the matching. We then 

run in the continuum theory using four or five flavors depending on whether q* is greater 

or less than the b-quark threshold mass. 

The b-quark threshold itself is determined as follows. We assume the pole mass mbpole 

is known and relate it to the m running mass mb(p) according to [23] 

“apole I) . 
Setting p = m(; = mb(m;), we fix the threshold mass rn; by solving 

mbpole 
4a cont(ma’) 

3r 1 
We use the usual two loop result for crcont: 

4lr 
%Ont = 60 ln(p2/A2) l- 

b1 In ln(p2/A2) 
b0 ln(p2/A2) 

with 

b0 = 11 - 2nf/3. bl = 102 - 38n,/3. 
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Here nf is the number of light flavors and we take A = 175MeV for five light flavors (241. 

For other nf, A is fixed by demanding that ocont be continuous. Applying this procedure 

with m bpole = 4.72GeV [25] gives 

rn; = 4.34GeV. 

Now that q* and rn; are fixed we use them in the combined two loop running plus 

one loop matching formula for Zcont. The one-loop anomalous dimension calculation [26] 

for the heavy-light axial current was extended to two loops by Ji and Musolf [27] and the 

two loop result was confirmed by Broadhurst and Grozin [29]. The same authors [30] also 

confirmed the one-loop matching calculation of Eichten and Hill [31]. The result for Zcont 

is: 

Zcont = 

( ~;tgi)y2a’ x 

(4) 

( 
l + orcont(mb’) - “contw) 70 

4n 
[--{p}] +cl%$~y. 

In this equation ^yo and 71 come from the anomalous dimension y of the heavy-light axial 

current in the effective theory, 

2 
T=Yo*+yI - ) 

riF> 

while cl comes from the effective to full theory matching at one loop in the continuumY 

obtained by the method described at the beginning of section 2.1. This matching produces 

a contribution to Zcont of 

Note that Ji and Musolf [27] quote cl with a sign error in the term which differs for vector 

and axial vector currents. The values of yi and cl are: 

70 = -4 

71 = -254/9 - 56n2/27 + 20nf/9 

Cl = -813 

Using equation (4) we determine the Zcont values given in Table 1. These are then 

combined with the 2’s obtained in the previous subsection to give the overall perturbative 
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Table 1: Length scales and renormalization constants used in this paper. The values 
of u-l for ~5.7,5.9, and 6.1 are taken from Ref. [43]. For /3 = 6.3, a-l is estimated 
from that at 6.1 by one-loop asymptotic freedom. Plaquette expectation values are 
taken from [20]. 2 - is the lattice to continuum renormalization factor for the axial 
current, Z,,, is the factor relating the continuum heavy quark effective theory to 
full QCD, and 2,~ is the overall renormalization factor used in previous discussions. 

P ( a-‘( GeV) 1 (fn uplq> 1 2 ( Zcont 1 ZA 

5.7 1.15(8) 0.549 0.73 1.00 .63 

5.9 1.78(9) 0.582 0.77 0.96 .65 

6.1 2.43( 15) 0.605 0.80 0.94 .68 

6.3 3.08( 18) 0.623 0.81 0.93 .68 

corrections Z listed in Table 1. Here, to conform with our previous notation 1281 we also 

list the quantity w 

(5) 

2.4 Renormalization of the Heavy Quark Mass 

Before leaving the subject of short-distance perturbative correction we will compute the 

tadpole-improved estimate of heavy quark mass renormalization. 

In the continuum static limit neither the heavy meson mass (MB) nor the renormalized 

heavy quark mass (mb) appears explicitly, only the residual mass combination A = Mn - “lb 

remains. The precise definition of the renormalized mass parameter in the dimensionally 

regularized heavy quark effective theory has been discussed by Falk, Neubert, and Luke (321. 

Since the heavy quark mass renormalization is a linear divergence it vanishes in dimensional 

regularization with minimal subtraction. 

On the lattice, the heavy quark mass is renormalized in the static limit. This mass 

shift, 6m, is proportional to l/a with a perturbatively calculable coefficient. Hence the 

mass, M,ff, calculated for the ground state B meson in this lattice theory can be expressed 

as 

M cff = A - 6m; (6) 

in terms the continuum residual maSs i and the mass shift 6m. It is clear from Eq.(6) that 

the mass M,ff is linearly divergent as the lattice spacing a -* 0. However, it would appear 
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that by measuring M,ff and removing the tadpole-improved one-loop mass counterterm, 

we have a determination of A. Hence we could obtain mb as defined in Ref. [32] from 

me. Unfortunately, Bigi et al [33] argue that non-perturbative effects ruin the preceding 

connection. Even if that is so, it is still possible to verify that the linearly divergent piece 

of M,ff is correctly determined by the perturbative calculation of 6m. 

At one loop, the lattice heavy quark mass renormalization is of the form, 

I 

The one-loop correction to the self-energy is linearly divergent and positive. The coefficient, 

6m, of the mass counterterm is negative. The integrand k(q) is given by [34], 

k(q) = f [$sin2(d2)]-‘. 

As already noted the effect 

quark mass is to change 

This non-perturbative reduction 

erm: 

where 

of tadpole improvement on the fitted value of the heavy 

C-C+?, 

of the mass is accompanied by a reduction in the countert- 

Gl QS 1 = --- 
3n a I 

$i(q) . 

hd = k(q) + j(q) 

As in the calculation of the scale q* , we need to compute the expectation vlaue of In q2 in 

the integral of i(q). The formulae determining this scale are: 

XS 
I 

dq i(q) = 10.07 (7 

(ln(qa)?) = + / d4q I(q) ln(q2a2) = E (8) 

p’a E exp[(ln(qa)2)/2] = 2.04 . (9) 

The calculational technique used is exactly that of Ref. [22], and the errors on the numerically 

evaluated values of X and Xln < q2 > are order 1 in the last decimal place. 

The values of av(p*) at the 0 values used in this study and a6% + In ue are presented 

in Table 2. 
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Table 2: Tadpole improved mass counterterm for a static quark at the p values used 
in this paper. The associated gauge couplings crv(p*) are also listed. The scale p’ 
is 2.04/a (see text), 

P 

5.7 0.228 -0.394 

5.9 0.191 -0.339 

6.1 0.170 -0.307 

6.3 0.156 -0.285 

QV(P’) a6m + In 210 

Two methods for the determination of A are possible. The first of these is to do the 

tadpole-improved perturbative subtraction just described. This results in a statistically 

independent result for & for each /3 value. The second method is to use the fact that the 

subtracted term is proportional to l/a, and.the physical value desired is independent of the 

lattice spacing. A two-parameter fit of the mass over the four values of p has two degrees of 

freedom, and one of the parameters is the one we desire. The latter procedure ignores the 

running of the coefficient of the l/a term. 

2.5 Comparison and Summary 

It is worthwhile at this point to compare the results in Table 1 with the widely used value 

of 2~ of 0.8, which does not benefit from tadpole improvement. Consider the results at 

/3 = 6.1. Rom the table, we find iZc,nt/& to be 0.68. Consequently, tadpole-improved 

perturbation theory results in a reduction of the physical value offs by a factor of 0.68/0.SY 

i.e., a reduction of 18%. 

As an aside, we note that for the clover action-also termed “improved”, but in the sense 

that order a effects rather than tadpole graphs are being incorporated-the axial current 

has been renormalized [35], but tadpole improvement has not been applied to this operator. 

NOW that perturbation theory has been reorganized to include tadpole corrections to all 

orders, we expect our one-loop calculation of the renormalization factor to be accurate to 
i 

about 7%. This estimate of the magnitude of the two-loop corrections is obtained simply 

by squaring the largest one-loop correction for the various values of r quoted in Ref. [22], 

for both discretizations of the axial current considered there. 

15 



While the values for Zcont depend on the estimate of the lattice spacing, this dependence 

is weak; an increase by 10% in the estimate of the scale results in a reduction of at most 1.5% 

in the value of Zcont. Thus this source of uncertainty in the Z factor is negligible compared 

to both the estimated size of the two-loop corrections or the direct dependence of fB on the 

lattice spacing. 
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3 Analysis Procedure for Multistate Smearing 

3.1 Relativistic Quark Model for Heavy-light Systems 

The rapid deterioration[l5, 161 of the signal to noise quality of Euclidean correlators of 

heavy-light mesons at large Euclidean time makes the choice of an eflicient smearing scheme 

essential if we wish to extract accurately the properties of low-lying heavy-light systems. 

In the multistate smearing approach previously introduced[l6], the coupling of smeared 

bilocal Coulomb gauge operators to higher meson states was reduced by using smearing 

wavefunctions obtained from a relativistic quark model (RQM). The basic features of such 

a model are (a detailed examination of the connection of such a model with the full field 

theory in the case of the t’Hooft model can be found in [36];see also,[37)): 

(a) the use of a relativistic kinetic term Jm (with ~1 a constituent quark mass) for the 

kinetic piece of the Hamiltonian, and 

(b) a static confining potential V(F), which can be chosen to be the static interaction energy 

obtained from correlators of temporal Wilson lines in lattice &CD. 

The importance of relativistic kinematics in determining the shape of meson wavefunc- 

tions (with a light quark) was already implicit, if not clearly recognized, in the puzzling 

persistence of purely exponential falloff (2: exp -CT) of hadronic wavefunctions, instead of 

the more rapid falloff one might naively expect in a confining model (3 exp -Cr3i2 for a 

nonrelativistic particle in a linearly rising potential). This exponential falloff is due to the 

nonlocal character of the kinetic part of the RQM Hamiltonian 

h’(l r - r’ I) 3 
/ 

dmexpip’. (?- i’)d3p (10) 

2: 1 ,. _ ,.’ l-Q/z e-+-r’l, 1 r - r’ I-, m (11) 

which implies that qkn(r) satisfying 

J 
d3r’K(l r - t’ I)*“(r’) + V(t)*,(r) = E,*,(r) (12) 

cannot full ezponentirrlly &ter than e-J’” (if it did, the integral over r’ in (12) would 

be dominated by r’ * ’ N 0, giving an asymptotic behavior N e -pr for the kinetic term, in 

contradiction with the assumed asymptotic behavior of (E, - V(r))*(r) for any V(r) with 

power growth). In other words, irrespective of the power rise of the confining potential, 

relativistic kinematics automatically smears out the wavefunction of a light quark over the 

Compton wavelength corresponding to the constituent quark mass. 
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In the static limit in which the heavy quark mass is taken to infinity, the relativistic 

Schrodinger equation (12) gives a single parameter fit (the constituent quark mass p is 

the only adjustable parameter after the static potential has been measured on the lattice) 

to a complete set of orthogonal spin-independent wavefunctions corresponding to arbitrary 

radial and orbital excitations of the heavy-light system. To minimize lattice discretization 

and finite volume artifacts in the comparison of RQM and lattice Monte Carlo results, we 

have generated a set of lattice smearing functions by solving a discretized version of (12), in 

each caSe on lattices of the same size as those used in the Monte Carlos, and in each case with 

the static potential determined from Wilson line correlators in the same gauge configurations 

used to extract our quenched QCD results. Namely, on each lattice and for each /3 value, we 

have extracted a full lattice static potential V(F) by measuring the correlator of two Wilson 

lines of time extent T (in Coulomb gauge-fixed configurations), and separated by a spatial 

distance 7. The potential is then extracted by going out in Euclidean time T until the static 

energy & = -+ In < W(O,T)Wt(r',T) >3 V(r7) stabilizes (for example, with /3 =5.9 on a 

163 lattice, this occurs for T >, 5). The static potential extracted at various p values and 

lattice sizes is displayed in Fig(l]. 

The procedure used for generating lattice smearing functions from the RQM is as follows. 

We wish to obtain orthonormal lattice wavefunctions which are eigenstates of a lattice RQM 

Hamiltonian defined on a L3 lattice (with 7, ? lattice sites): 

Kv s KFP + V(r’)&7 (13) 

(14) 

Such an eigenstate, in a channel of given orbital quantum number (S,P,D etc), will corre- 

spond to a pole of the resolvent applied to a source wavefunction g(‘) of the same orbital 

symmetry: 

R E 11 ~(&)~~~(“)(ql~ + cm 
I-’ 

(15) 

For the starting source functions q(O), one may take for example a monopole localized 

at the origin for S-states, a dipole for P-states, etc. After the energy E is tuned close to 

an eigenvalue E, (until R is at least lo3 larger than the background value), a smearing 

eigenstate *b”,‘,,,(rJ is extracted by renormalizing the vector -&q(O) to unit norm. The 
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Figure 1: Static potential calculated in Coulomb gauge at p = 5.7,5.9,6.1 and, 6.3 
on lattices of size 123 x 24, 163 x 32, 243 x 48, and 323 x 48, respectively. Errors 
shown are statistical. 
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inversion of E-H is performed by the conjugate gradient algorithm, with the multiplication 

of the kinetic term done in momentum space using a fast Fourier transform. 

In most c=es we have found it adequate to fit the RQM constituent mass by matching 

the 1S wavefunction generated by the above procedure to the Coulomb gauge Bethe-Salpeter 

wavefunction obtained at a roughly fixed Euclidean time (corresponding to time slice 4 at 

+5.9). For the particular case of p=5.9, n=0.159, on a 163 lattice, a more detailed fitting 

procedure was used to determine the optimal choice of quark mass p in order to fit the 

meson wavefunction at various time slices. The mean square deviation of q!,?$.L, from the 

measured quenched wavefunctions at various times i”, for various CL, is displayed in Table 3. 

Table 3: Mean square deviation of RQM smearing and LQCD heavy-light wavefunc- 
tions (x106), for @ = 5.9, IC = .159 as a function of time. p is the constituent quark 
mass parameter in the RQM Hamiltonian. P 

I 
T=4 T=5 

t 

.I T=6 T=7 T=8 

0.05 3.37 1.99 1.36 5.65 5.95 

0.10 0.75 0.42 0.20 1.86 2.14 

0.12 0.37 0.45 0.36 1.02 1.30 

0.15 0.40 1.06 1.15 0.39 0.67 

1 0.20 1 1.75 1 3.30 1 3.61 1 0.72 1 1.00 1 

From Table 3 we see that the optimal choice for the constituent quark mass varies in 

the range 0.10-0.15 if we fit to meson wavefunctions on time slices 4 to 8. We have chosen 

~=0.12 as the best compromise for @5.9, r;=O.159. With this parameter fixed, we have 

generated, by the procedure outlined following (12), lS, 2S, 3S and 4S smearing functions 

to be used in the multistate analysis described in the next section. For other ,!?, n values, we 

have usually used two smearing states only. The careful tuning of the quark mass performed 

here reduces to a very small level (4 percent or less) the coupling of the exact ground state to 

the higher smearing states, but will not turn out to be essential to the extraction of accurate 

masses and couplings for the ground state. A detailed discussion of the dependence of the 

results on the RQM mass parameter chosen for smearing is given in Section 5.1. 

As described in a recent article [17], the RQM gives a single-parameter fit to all the 

excited radial and orbital meson wavefunctions of our heavy-light system. After fixing p 

by a match to the 1S wavefunction, we have found remarkable agreement with measured 
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excited state wavefunctions (for example, the 1P state, cf [li]). This agreement suggests 

that this Ansatz accurately describes at least the valence quark sector of the full mesonic 

bound-state. 

3.2 Multistate Smearing 

Our object in this section is to outline a general procedure for extracting the maximum 

usable information from the multistate correlator mat& 

Cab(T) = c ok,,,,, (‘) (3 < 0 I d<T)~tO, T)Q(O,O)#,O) I 0 > *.!f,i,,,(~) 
w 

(16) 

where q(Q) are light (heavy) quark operators, and the Op,‘,,, (a=1,2,...N) contain the set 

of orthonormal smearing functions obtained from the RQM as described in the preceding 

section. From a set of N, decorrelated gauge configurations, we begin with a corresponding 

ensemble of N, statistically independent Cab(T) matrices, from which a standard deviation 

matrix cab(T) can be obtained directly. In addition to the smearing wavefunctions of the 

relativistic potential model, the set {g(“)} also includes the local source generating the 

desired heavy-light axial-vector matrix element for extracting f~. Other types of smearing 

(cube, wail, etc) may also be included to facilitate an objective comparison with other recent 

calculations. In (16), the heavy and light quark propagators in each gauge configuration 

are computed in Coulomb gauge. As we are dealing with global color singlet states on each 

time slice (color sums are suppressed) Cab is well-defined and non-zero. 

Defining states 

1 P’,T >s c ‘I’$,,, (r3&(0. TM5 T) I 0 > 
i 

(17) 

we have 

Cb( t) = <#‘,T(+‘,O> (18) 
M 

= c e-EnT < itia ( n >< n 1 ab > +O(e-EM+lT) (19) 
ll=l 

where the states 1 n > are exact eigenstates of the lattice Coulomb gauge transfer matrix 

with eigenvalues eqE=. The remainder term of order eMEM+IT will of course be small at large 

Euclidean time, but in addition should have a small prefactor to the extent that our smearing 

functions *.!“,‘,,,(fl (a=1,2,..M) d o a good job in representing the valence quark structure 
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of the low-lying states, and to the extent that more complicated Fock states (containing 

extra quark pairs, real gluons, etc) are not too importalit. 

Next, define mixing coefficients (in our case, they are real): 

u (1 ” E< Q0 In>=< n 1 aa > (20) 

Neglecting the exponential contamination of order e -EM+lT, we see that the multistate 

coupling matrix can be fit to an expression of the form 

M 
P(T) = C uanubne-E”T (21) 

Of course, we cannot hope to extract M independent time-dependencies with N < M 

smearing wavefunctions, so only N 2 M will be considered. Typically we shall extract 

the maximum information from the lattice data by picking N = M + 1 (the extra source 

function being the local current needed for the extraction of fe). 

The fit is performed by a chi-square minimization of 

x2 I c 2 I c=*(T) - x$L;;;u*“e-E-* I’ 

a,6 T=T< 
(22) 

with respect to the fitting parameters {v“,,En}, over a fitting range T, 5 T 5 T> in 

Euclidean time. The fit is performed on an ensemble of iVC jack-knife coupling matrices 

obtained by replacing each in turn of the hrc coupling matrices by the average matrix and 

reaveraging. We have chosen 1 ON >E Ja,i,r(O) I 0 >, SO the parameters u”, should 

be interpreted as Mice f-parameters for the ground and excited meson states, E, as the 

corresponding masses, and ua, (a=1,2,..,M) as mixing coefficients indicating the degree of 

overlap of the exact meson states with our RQM smeared states 1 P >. The sum over a, b 

in (22) does not include the local-local correlator a = b = IV, which is not well described 

by a sum over a few low-lying states. Note that this fitting procedure automatically gives 

the lattice f-parameters without the need to divide by the square-root of the smeared- 

smeared correlator as in the usual approach. Moreover, the ensemble of AI: parameter sets 

{v’,, E,,} obtained in this way can be subjected to a straightforward statistical analysis to 

determine the error in each of these parameters se;arately, correlations between parameters 

(e.g. between masses and f-parameters), and so on. 

Once the overlaps < a0 ( n > have been estimated by a best fit of C’*(T), a smearing 

operator can be constructed which is guaranteed to contain at most one of the first N exact 
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meson states, thereby removing any other exponential time-dependence to the esEN+lT 

level. Specifically, if s,, c, ..(IN is the totally antisymmetric symbol in N dimensions, the 

smeared state 

I $A >3 ~olaa,,oN n U”i [ OaA >, A = 1,2,..M (23) 
i#A 

is guaranteed (to the extent that we have accurately extracted the mixing coefficients ua,) to 

contain only the exact meson state I A >, together with contaminations from the (N + 1)‘th 

excited state and higher. An effective mass plot of the usual kind can then be obtained for 

the A’th state by displaying (we use a smeared-local correlator to minimize noise) 

m&(T) E In “~~~)‘) (24) 

where 

CA(T) =< &A,T ( +(‘Oc),O > (25) 

Of course, this plot will be most flat for the ground state A = 1, where the relative expo- 

nential contamination is reduced to the level e-(EN+~-El)T, and where small admixtures of 

lower-lying states cannot creep in to distort the effective mass plateau. The effective mass 

plots for the ground state at ,LI = 5.7,5.9,6.1, and 6.3 for various kappa values are shown in 

Figs.[2-71. The solid line in each of these plots represents the ground state energy extracted 

from the full multistate fit over the time window indicated by the length of the line. For 

each 0 the time window for the multistate fit was chosen to be over approximately the same 

interval in physical units, viz. about $fm to lfm. Noting that the splitting between the 

ground state and the second excited state is found, in our multistate calculations, to be 

around 800 to 900MeV, the choice of $fm for the lower end of the time window should 

provide an exponential supression of excited states by at least a factor of 3. In addition. 

our careful tuning of the smearing functions should produce a relatively small coefficient 

for the higher excited states. The equality of the smeared-smeared and smeared-local effec- 

tive masses exhibited in the plots confirms our choice of fitting interval. A more complete 

discussion of systematic errors due to excited states is given in Section 5.1. 

The fitting formula (22) is easily generalized to%llow a global fit to the data at various 

K values (for fixed /3): this is essential in order to take into account correlations between the 

coupling matrices at different n values, which would affect our estimate for the error of the 
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results when linearly extrapolated to n,. Namely, (22) is replaced by 

where 

vay(n) P ?Jo” ” + ?J; “(n-’ - Kg’) 

E”(K) 3 Eon + El n(K 
-1 _ )$-l 

c ) 

and the mixing coefficients ~F’X’~.~~ are varied freely. Note that only the immediately 

physical mass and lattice-f parameters are assumed to have the chiral dependence on n-‘: 

other mixing coefficients involve the model dependent choice of smearing functions from the 

RQM. The chi-square minimization allows the direct extraction of masses and couplings 

extrapolated to n,, as well as the slopes in 6-l of these quantities (all of which are free 

variational parameters in this new global fitting procedure). The usual jackknife procedure 

can then be applied to yield the correct errors on the extrapolated quantities. 

i 
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4 Lattice Results for Heavy-Light Mesons 

To extract results for masses and decay constants we have used the set of gauge config 

urations and light quark propagators enumerated in Table 4. The light quark action we 

use is not O(a) improved. The four columns in Table 4 are the gauge coupling, P; lattice 

size; number of gauge configurations (separated by 1000, 2000, 4000, and 4000 sweeps for 

/3 = 5.7, 5.9, 6.1, and 6.3 respectively); and the light quark n values calculated for each 

configuration. 

Table 4: Summary of gauge configurations and light quark parameters used in this 
paper. Listed are a letter used to identify each Monte Carlo run, the @ value, lattice 
size, number of gauge configurations in each ensemble, and the values of light quark 
hopping parameter K. analyzed. 

run P lattice con fs K 

b 5.7 123 x 24 100 .168,.1667,.165,.161 

e 5.9 123 x 24 100 .159,.158,.157,.154 

C 5.9 163 x 32 100 .159,.158,.157,.156,.154 

f 5.9 203 x 40 100 .159,.158,.157,.154 

d 6.1 243 x 48 50 .1545,.154,.153,.151 

‘3 6.3 323 x 48 50 .1515,.1513,.1510,.1500 

The multistate smearing analysis outlined in Section 3 provides a powerful method for 

extracting heavy-light meson parameters. Unlike single or double exponential fits to single- 

channel “smeared-smeared” and “smeared-local” correlators, the fitting of the N x 1%’ matrix 

of correlators to an expression of the form (21) is highly constrained. As we will show. this 

method allows a determination of fe and other heavy-light parameters which is less prone to 

systematic errors than previously applied methods. In this section, we present our results. 

In Section 6.2 we compare these results with those recently reported in Refs.[l2, 14, 19, 411. 

Most of the results presented here were obtained from the fitting procedure discussed in 

Section 4 using N = 3 and M = 2, i.e. a 3 x 3 matrix of correlators (2 smearing functions 

and the &function source) fit to the sum of two exponentials (always excluding the local- 

local correlator from the fit). To estimate the systematic errors associated with the fitting 

procedure, we have tried varying both the shape of the smearing functions (by adjusting 
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the RQM quark mass parameter) and the number AV of smearing functions included. These 

results are discussed below. 

First consider the mass eigenvalue Er in Eq. (22) which describes the leading exponential 

falloff of the heavy-light correlators 

P(t) 5~ vrvfe -El1 
(27) 

In the multistate fitting procedure, Ei is the energy associated with the ground state contri- 

bution to the correlator. This parameter represents a combination of the binding energy of 

the B-meson ground state plus a divergent mass shift of the heavy quark. Recall that only 

the bare mass of the heavy quark is removed in reducing to the effective static theory. The 

mass shift induced by QCD is therefore measureable on the lattice as a non-scaling piece 

in the parameter El. We measure the dependence of El on both the light-quark hopping 

parameter n and the lattice spacing a. The graph in Fig. 8 shows the n-dependence of Ei 

for the four values of /3 studied. In each of the four data sets, the dependence on n-l is 

quite linear, ahowing an accurate extrapolation to the chiral limit IC,. Numerical results 

are tabulated in Table 5. For each value of beta and kappa the results in this table were 

obtained from a 2-state fit, with the x2 per degree of freedom of each fit listed in the last 

column. For p = 5.9, the x*/dof are those obtained on the 203 box. The results for in 

and aE1 at ,0 = 5.9 listed in Table 5 are the infinite volume values obtained by fitting all 

three box sizes to a Luscher finite volume formula, as described in Section 5.2 (except for 

K = .156, which has only been done on the 163 box). The results for the three box sizes 

are listed separately in Tables 7 and 8. A measure of the overlap between the true ground 

state and the RQM wavefunction smeared operators is given by fi [~,“=,(vf)r] ’ /&. 

The measured values of this overlap for each of the fits is recorded in Table 5. 

In addition to analyzing the data at each value of n separately, we have also performed a 

simultaneous fit to all n values for a given p by allowing the multistate fitting parameters L$, 

to depend on R, as described in Section 3. Using this procedure on jackknifed subensembles 

provides a better estimate of the error on the chiral extrapolation, since it takes account 

of the fact that the different n values have correlated errors. Comparing the results of this 

analysis with results of a separate analysis of each K, we find that the extrapolated values 

for El and fs change very little, while the error bars on these results are about 30% lower 

than those obtained by ignoring K correlations. On the other hand, the results for the 
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Figure 8: Heavy-light ground-state energy a& vs. bare quark mass for ,B = 
5.7,5.9,6.1, and 6.3 Each data point is the ground state energy extracted from 
a two-state fit. Error bars are statistical only. Solid lines are obtained from a 
simultaneous two-state fit to all kappa values for a given /3 as described in the text. 
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Table 5: Lattice results for heavy-light mesons (static approximation). Values for 
the ground state energy a& and decay constant f~ are extracted from a 2-state 
fit over time window AY’. (& is related to the physical decay constant fs by Eq. 
(30)). Results at K = n, are from the multi-6 fits as discussed in Sec. 3.2. The 
column labeled overlap is a measure of the total overlap between the true ground 
state and the RQM wavefunction smeared operators used. 

-F - 
5.7 

5.9 

6.1 

6.3 

- 

AT 

2-8 

3-10 

4-12 

5-14 

K a& overlap 

.161 .827(6) .725(7) 

.165 .794(8) .717(8) 

-1667 .776(g) .699( 7) 

.168 .767(11) .694( 9) 

Kc .758(10) .694(8) 

.154 .719(5) .742(12) 

.156 .692(8) .731(13) 

.157 .678(6) .724(13) 

.158 .665(7) .716(15) 

.159 .645(g) .704(18) 

Kc .638( 9) .686(24) 

.151 .620(7) .769( 17) 

.153 .583(g) .721(24) 

.154 .561(11) .705(24) 

.1545 .551(13) .700(30) 

Kc .544(12) .689( 25) 

.1500 .528(i) .748(18) 

.1510 .511(7) .728(20) 

.1513 .506(8) .724(20) 

.1515 .504(8) .729(20) 

Kc .499(9) .720( 17) 

- 
fW 

.670( 19) 

.626(23) 

.590(24) 

.578(29) 

.564(28) 

.347(11) 

.318(13) 

.300(11) 

,283(12) 

#259( 14) 

m250(14) 

.199( 10) 

.170( 12) 

.149( 12) 

.142( 14) 

.135( 13) 

.120(7) 

.107(7) 

.104(i) 

.103(8) 

.099(8) 

x2 ldof 
.50 

.78 

.54 

.43 

.58 

.a7 

1.06 

.62 

.56 

.60 

.66 

.57 

.60 

.61 

.48 

.55 

.72 

.66 

.61 

.56 

.62 
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slope of these quantities as a function of JC-~ are greatly improved by the simultaneous-n 

fit, reducing the errors by a factor of 3 or more over the independent-K analysis. Thus it is 

especially important to take account of inter-n correlations for quantities such as mg, - mg, 

and f~. /fw.. 

Let us consider El as a function of the lattice spacing a and of the naive light quark 

mass (see Appendix). The linear dependence on 6-l becomes 

Ei(2am,,a) = El(O,a) + (K-’ - n,‘)Ei(O,a) 

= El(O,a) + 2am&(O,a) 

(28) 

The quantity Merf defined in Section 2, Eq. (6) is just El evaluated at K = K,. 

M eff = El (0, a) (29) 

The slope parameters Ei (0, a) are obtained. by a correlated fit to all n-values, as described 

in Section 3. The results for the slopes and intercepts are given in Table 6. 

Table 6: Slopes and intercepts for a& and f~ as a function of PC-~ - 6;‘. For a 
given P,vaIues are obtained from a simultaneous two-state fit to all values of rc over 
a time window AT. 

I P - 
ar 
2-8 
3-10 

4-12 

5-14 

iB@) 

.564( 29) 

.250( 13) 

.138( 13) 

.099( 7) 

mu 
.424( 72) 

.444(38) 

.387(46) 

.290( 56) 

In a similar way, we obtain a linear fit (see Fig. 9) to the K-~ dependence of the 

groundstate pseudoscalar decay constant fw. Define a quantity FB which is just the matrix 

element parameter vr ’ m the multistate fit (overlap of the ground state with the b-function 

source), with a normalization factor fi for the light quark included. In the scaling limit. 

the physical value of fw is related to fB by the following multiplicative constants, 

fw =j~ x /-& x a-+ x .Z.4 

where 2~ is the renormalization factor associated with matching the full theory with the 

effective static theory on the lattice, as discussed in [34], [42], and in Section 2. 
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0 p = 5.9 
0 p = 6.1 
0 p = 6.3 

0 

(l/K - It&a (GeV) 
0.2 

Figure 9: in as a function of bare quark mass for the four runs /I = 5.7,5.9,6.1, and 
6.3. Data points are decay constants extracted from a two-state fit. Error bars are 
statistical only. Solid lines are obtained from a simultaneous fit to all kappa values 
for a given beta as described in the text. 
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The lattice spacing dependence of El in the chiral limit mq = 0 is plotted in Fig. 10. 

The results are consistent with a linear a dependence, 

aEl(0, a) = El (0,O) + &a (31) 

0.6 

0 0.2 0.4 0.6 0.6 1 
a (GeV “) 

Figure 10: Heavy-light ground-state energy at IC = IC, vs. lattice spacing for p = 
5.7,5.9, .6.1, and6.3. Solid line represents a minumum-x2 linear fit to the four data 
points. 

with 

E1(O,O) = .351(14) (32) 

El = .481(25)GeV (33) 

The first term El(O,O) is the linearly divergent (i.e. 0(1/a)) term in the heavy quark maSs 

shift. 

The tadpole-improved estimate of a6m was discussed in Section 2. The corresponding 

quantity is a6& + In ~0, and was tabulated in Table 2. Comparing the ground state effective 

37 



mass with the tadpole improved l-loop result at each lattice spacing one finds about a 

30 % discrepancy in the singular part of the mass shift, which can easily be accounted 

for by higher-loop and/or nonperturbative contributions. In fact, ordinary (non-improved) 

one-loop perturbation theory (341 gives 

6m=-ixLx19.95 
a 12ns (34) 

Simply identifying this value with the extrapolated lattice result gives a, N 0.162(6) which 

is in reasonable agreement with other determinations of cr, in the range of lattice spacings 

considered here [20]. So the entire “discrepancy” can be removed by a reasonable redefinition 

of the perturbative coupling being used. 

The mass of the meson B., composed of a b quark and a strange antiquark, is of 

considerable phenomenological interest. Our calculation of the heavy-light ground state 

energy as a function of K provides a determination of the mass splitting between the B, and 

the B, mesons 

AMw, = MB. - Mw. (35) 

Since the divergent self-mass of the heavy quark is independent of light quark mass, it will 

cancel in the mass difference AMw,, and the latter should therefore scale properly with a. 

For each value of p, we use the determination of K, and K, discussed in the Appendix. along 

with the observed K dependence of El to determine AMw,. The results are shown in Fig. 

11. 

A linear extrapolation of the mass difference AMw, to a = 0 gives 

AMw. = 86 f 12 MeV (36) 

Notice that the results for A,UB, shown in Fig. 11 exhibit a fairly mild dependence on the 

lattice spacing, in marked contrast to the strong a-dependence of fw. The decay constant 

fw, for the strange B-meson may be determined, using the values for the slope parameter 

& in Table 6. The ratio f&/f& is plotted in Fig. 12. Again, the a-dependence of the 

ratio is much weaker than that of fw itself. Extrapolating to a = 0, we obtain 
i 

fw 2 = 1.216 f 0.041 
f& (37) 
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. Figure 11: MB, - M 8. 
line is a quadratic fit 

vs. lattice spacing. Solid line is the best linear fit. Dashed 

(See Section 5.5). 
(a2) used to estimate systematic error in a + 0 extrapolation 

i 
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a 

=" 1.2 
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a (GeV“) 

. 

Figure 12: fBs/fB,, vs. lattice spacing. Solid line represents the best linear (a) 
fit. Dashed line is a quadratic fit (a2) used to estimate systematic error in a + 0 
extrapolation (See Section 5.5). 
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5 Determination of Systematic Errors 

5.1 Systematic error due to excited state contamination 

The main results presented for fB have been obtained by a 2-state fit to the correlators 

which employed quark-model smearing functions for the ground state (1s) and first radially 

excited (2s) state, As pointed out in Section 3, this produced quite stable effective mass 

plots which indicated that accurate ground state parameters could be extracted with time 

separations as short as T = 2 or 3. Since the errors in most previous calculations have 

been dominated by the systematic effect of higher state contamination, it is particularly 

important to estimate the size of this effect to get an overall determination of the accuracy 

of our results. To further investigate this issue, we have carried out a more complete study 

of the dependence of the extracted iw value on the fitting procedure. First, we have varied 

the size of the source smearing function by changing the quark mass parameter p in the 

RQM wavefunctions. We then compare the results from the 2-state fit with those from a 

truncated l-state fit (using only the correlators of the ground state smearing function and 

the delta-function source). 

In Figure 13 we compare the effective mass from the l-state fit with that of the 2-state fit, 

After determining the lS-2s splitting A from a 2-state fit, the effective masses obtained over 

a Euclidean time window can be plotted versus the variable e- A*, allowing an extrapolation 

to t = 00 (See below). The results of the l-state fit are plotted for four different time 

windows, 1-6, 2-7, 3-8, and 4-9, and for four different choices of RQM smearing functions 

(with quark mass p = .32, JO, .90, and 1.20). (Note: The result from window t< - t, is 

plotted at the value of ewAL corresponding to t = t<.) The effective masses from the 2-state 

fit using the four different p values and the time window 3-10 are all plotted on the far left 

side of the plot at eoA* = 0. The l-state results for the different smearing function choices 

are clearly converging to a common effective mass at t = 00 which agrees well with the 

2-state result, the latter being quite insensitive to the choice of ,L Similarly, the result for 

fe from the full P-state fit remains unchanged, within errors, for a wide variation of the ~1 

parameter. On the other hand, the result from the l-state fit varies by 20-30 % over the 

same range of p values. This provides strong evidence that the 2-state fit does a good job of 

isolating the ground state, even when the chosen smearing functions are not very well tuned. 

To demonstrate this, we look at the dependence of these results on the time window chosen 
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~XP[ - 0% - El It mid 

Figure 13: Time-window dependence of effective mass for l-state fits compared 
with 2-state fits for p = 5.7, n = .161. The four sets of points represent the different 
values of RQM maSs parameter p used to construct smearing functions. One-state 
fits were obtained from time-windows (reading from right to left on the graph) l-6. 
2-7, 3-8, 4-9. Points are plotted at exp[-(AE)t,i,], where AE = E2 - El is the 
splitting of the frrst excited (2s) state from the ground-state and tmin is the smallest 
time included in the, fit. The 2-state fits were obtained from the window 2-8 but are 
plotted here at t x 00 to illustrate the convergence of the l-state effective mass to 
the essentially p independent 2-state value. 
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for fitting. While the two-state fits are generally stable under variation of the time window, 

the l-state fit shows a systematic time-dependence. If this time-dependence is assumed to 

be largely due to contamination from the first excited state, it should fit asymptotically to 

the functional form 
- 

fdt) = fs(m) + Ce 
-At 

(38) 

where A = E2 - Ei is the energy splitting between the ground state and first excited 

state. Without an independent estimate of this splitting, it is difficult to obtain a reliable 

determination of the parameters in (38) directly from the results of the l-state fit. On the 

other hand, the 2-state fit determines both El and Ez, and therefore A. If we use this 

determination to fix A, the formula (38) can be used to extrapolate the l-state results to 

t= 00. Comparing this result with that of the full P-state fit provides a useful and nontrivial 

check on the assertion that the systematic effect from excited states is under control. Figure 

14 shows the results of such a comparison for the case p = 5.7,~ = .161. The splitting 

obtained from the 2-state fit is A = .321 in lattice units. It is seen in Fig. 14 that, for 

the time window l-6 (far right on the graph), the result for IB varies systematically with 

the choice of smearing function. As t gets larger, the results from the different smearing 

functions tend to converge to the same value. The points plotted at eVAi = 0 include the 

four extrapolated values obtained from Eq. (38). For comparison, the results of the 2-state 

fit for the four JL values and t = 3 - 10 are also plotted. All of these points are well within 

a standard deviation of each other. Similar comparison of the results of l-state and P-state 

fits for other values of 0 and K give comparable agreement. Based on this agreement, we 

conclude that the systematic error on our results due to excited states has been eliminated 

at the level of our present statistics. 

It is worth emphasizing here that our ability to control excited state contamination 

depends crucially on the use of the multi-state fitting procedure. Although the l-state 

fits were all found to lead to consistent results after extrapolation to t = co, an accurate 

extrapolation would not have been possible without an independent determination of the 

splitting A, which is only obtainable from the 2-state fit. 

5.2 Finite volume corrections 

Using the scales in Table 1, we find that the physical volumes of the boxes for the main 

ensembles used in our calculation are approximately (2.Ofn~)~, (l.gfrr~)~, (1.9fm)3, and 

43 



1.3 

1.2 

$? 1.1 

1 

0.9 

L 

; t 

2state 
fit 

ii 

1 state 
extp 

0 p=1.20 
0 p = 0.90 
0 p=O.60 X p=O.32 

p=5.7 ~=.I61 

1 state fits 

P 0 

+ 
* 

P 

I 
0 

0 0.2 0.4 0.6 0.8 

ew[ - (E2 - El hn 1 

Figure 14: Time-window dependence of FB for l-state fit and comparison with 2- 
state kt. (See caption of Fig. 13.) Also plotted for comparison are the values 
obtained by extrapolating the l-state fits to t = ‘x), using the measured value of the 
energy-splitting E2 - El = 0.32. 
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(2.Ofn~)~ for p = 5.7(123), 5.9(163), 6.1 (243), and 6.3 (323) respectively. Although these 

volumes appear to be comfortably large compared to the observed size of the ground state 

B-meson on the lattice, we consider in this section the possibility of corrections to our results 

due to finite volume effects and describe our method for estimating these effects. Although 

our overall conclusion is that these effects are negligible on the lattices considered here. 

the estimates discussed in this section may be useful for selecting p’s and lattice sizes in 

subsequent studies. 

An extensive theoretical study of finite volume effects on field theoretic calculations has 

been carried out by Luscher [45]. Consider, for example, the effect on the mass of a particle 

mp. For large enough volume, the leading effect is due to the propagation of the lightest 

mass meson (e.g. pion) “around the world,” leading to the expression for m(t), the particle 

mass in an L x L x L box, 

mp(L) = mp(oo) + AT (39) 

where the exponent X is determined by the mass of the pion, and A is given in terms of 

the on-shell lrPP coupling. This finite volume correction can be interpreted as the effect 

of squeezing the pion cloud surrounding the particle. A somewhat different situation takes 

place when the particle P is a loosely bound state of constituents. In this case, the finite 

size effect is caused by the squeezing of the bound state wave function [46). As pointed out 

by Luscher 1471, this situation falls into the same general framework as that which led to 

Eq.(39), except that, in this case, the particle that travels around the world is one of the 

constituents of the bound state. In fact, for a nonrelativistic bound state in a non-confining 

potential, the finite volume effect assumes exactly the same form as (39), but in this case, 

the exponent X is related to the binding energy (and hence to the spatial extent of the bound 

state wave function). 

For the case ,0 = 5.9 we have carried out a complete Monte Carlo investigation of the 

heavy-light propagators on lattices of three different sizes, 123 x 24, 163 x 32. and 203 x 40 

(runs e, c, and fin Table4). With the value a-l = 1.78 GeV, these three boxes are of spatial 

length 1.3 fm, 1.8 fm, and 2.2 fm, respectively. The results for both the ground state energy 

aEl and for f~ are given in Tables 7 and 8. They are seen to be the same, within errors, 

in all three size boxes, and thus, no significant finite size effect is observed. In order to 

determine an upper limit on the finite volume corrections to our results, we will make the 
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assumption that these effects can be parametrized in the Luscher form (39). 

,-XL 
aE1 (L) = a& (00) + &El L (40) 

- ,-XL 
h(L) = b(m) + A - - fs L (41) 

(Note: For particle masses in full QCD in a sufficiently large box, such an expression has 

been derived rigorously. For masses in quenched approximation and for decay constants, 

it’s validity is not established, but we adopt it as a convenient ansatz. An alternative power 

law form is also discussed at the end of this section.) For a given choice of the exponential 

parameter X, a fit to Eq. (39) gives a Limit on the coefficient A. 

Table 7: Volume dependence of a& at p = 5.9. Results are obtained from a 2-state 
fit over time window AZ’ = 3 - 10 on lattices of size 123 x 24, 163 x 32, and 203 x 40. 
Numbers in square brackets are the x2 per degree of freedom for each multistate fit. 

tc a&(12) aE1(16) aE1(20) 

.154 .716(g) .718(7) .719( 6) 

WI [1.12] WI 

.157 .675( 12) .679(8) .677(8) 

WI [l.Ol] PW 

.158 .661(14) .667(g) .662(g) 

PA P4 I561 

.159 .652(21) .652( 12) .641( 11) 

WI 1.76) L601 
6 .638( 17) .643( 11) .634( 11) 

[l.Ol] P21 WI 

Our strategy is to extract an estimate of the exponent X in the Luscher formula by 

two methods: (1) a direct study of the finite volume effects in the relativistic quark model, 

and (2) a study of the exponential falloff of the ground state wave function obtained in 

the LQCD calculation. For both f = fs and f 2 aE1, the results from the RQM were 

calculated on 123, 163, and 203 boxes. (The relativistic Van Royen-Weisskopf formula(371 

was used to obtain f~ from the RQM wave function.) For the lightest quark mass studied, 

the RQM estimate gives X/a = 0.9 GeV. (The results for aE1 and for in are both well fit 
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Table 8: Volume dependence of Jo at p = 5.9. (See caption of Table 7.) 

K f14W h(W h?w 

,154 .341(21) .347(13) .346(14) 

.157 .299(22) .303(14) .298(15) 

.158 .284(24) .288(15) .278(16) 

.159 .279(35) .271( 18) .252( 17) 

Kc .261(29) .260(18) .245(18) 

with the same value of X.) A slight increase in the value of X for larger light quark mass is 

observed, but is inconsequential for our analysis. A direct study of the exponential falloff of 

the LQCD ground state wave function (using the bound state interpretation of the Luscher 

formula) gives a similar, but somewhat smaller estimate of X/o = 0.75 GeV for the lightest 

quark mass. A smaller value of A assumes a slower falloff with box size and thus allows for 

a larger finite size effect on the 163 and 203 lattices. Thus, in order to obtain a conservative 

upper bound on these effects, we have assumed a value X/u = 0.7 GeV, i.e. slightly smaller 

than the RQM and wave function estimates. To determine the sensitivity of the conclusions 

to the value of X, we also fit the data using X/a = 0.9 GeV, which yields an upper bound on 

the 163 box about 50% smaller than the X/a = 0.7 GeV fit. In Table 9, we give the results 

of fitting the 123, 163, and 203 LQCD Monte Carlo results to the finite volume formula Eq. 

(39). For aEl and Jo, the Table gives the fitted infinite volume result, and an upper bound 

on the finite volume term evaluated on 163 and 203 lattices. 

Rom Table 9 it is seen that, in all cases, the estimated finite volume effect on both aEl 

and on fn is smaller than our statistical error by more than a factor of two on the 163 lattice 

and by more than an order of magnitude on the 203 lattice at 0 = 5.9. To determine the size 

of finite volume effects on the quantities MB, - JOB,, and fB,/fs,, we also need to estimate 

the error on the slope parameters E;(O) and fQ in Table 6. From the n-dependence of the 

finite volume fit parameters, we estimate an approximate upper bound on the finite volume 

error for the slopes to be (AE’,)/Ei c .03 and (Qih)/& < .05 for the 163 box, and by 

(AEi)/Ef c .005 and (A&)/& < .008 for the 203 box. Again this is about a factor of two 

below our statistics for 163 and entirely negligible for 203. 

Recently, it has been argued (481 that, in intermediate ranges of volume where the 
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Table 9: Estimate of finite volume corrections to heavy-light results for p = 5.9. 
For each K, results include the fitted infinite volume value for the ground state 
energy and decay constant, as well as estimated upper bounds on the finite volume 
corrections on 163 and 203 boxes. Unbracketed and bracketed numbers result from 
fitting to a Luscher asymptotic form and to a power law (LB3) form, respectively. 

6 0.154 0.157 0.158 0.159 Kc 

a& (00) .719(5) .678(6) .664(7) .645(g) .638(g) 

[.719(7)] [.679(g)] [.664( ll)] (.638( 13)] [.636( 13)j 

A(4 )(16) f .002 f .002 f .003 zk .004 f.003 

[k .006] [k .008] [It .008] [k .012] [f.Oll] 

A(aEl )W) f .0003 f .0004 f .0004 f .0006 f.0005 

[k .003] [k .004] [A .005] [A .006] [f.006] 
- 

fs(oQ) .346(11) .300( 11) .283( 12) .257( 14) .246( 14) 

(.348( IS)] [.299( 17)] [.280( 19)] [.248(23)] [.244(21)] 

Gm) f .004 l .004 f .004 f .006 f.005 

[A .013] [It .014] [A .015] [k .006] [f.005] 

&3W) f .0006 f .0007 f .0007 f .OOll Et.0008 

[k .007] [f .007] [lt .008] [k .Oll] [f.009] 

asymptotic behavior predicted by Luscher’s volume formula has not yet set in, the volume 

dependence might be expected to exhibit a power law dependence of the form 

n(L) = 
const. 

m(m) + 7 (42) 

instead of the exponential falloff of Luscher’s result. This power law form is also found by 

the authors of Ref.[48] to fit better to their data on light hadron masses (in full QCD). If 

we assume a similar power-law dependence for the heavy-light data, we obtain extrapolated 

infinite volume results and bounds on finite volume corrections which differ from those 

obtained with Luscher’s form. The values in Table 9 which are enclosed in square brackets 

are the results obtained by assuming a power law dependence of the form (42). Notice 

that the extrapolated infinite volume values change very little compared with the previous 

analysis. The bound on the finite volume effects at lG3 are somewhat larger, while those on 

the 203 lattice are much larger. However, in all cases, the bound on the finite volume effect 

is less than the statistical error. 
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To estimate finite size effects for the other P values, it is reasonable to assume approx- 

imate scaling. The box sizes for the other ,6’s have been selected so that they are all of 

about the same physical size as the 163 box at P = 5.9 (between 1.8 and 2.0 fm). Thus, 

we conclude that finite size effects on all of our data is smaller than our present statistical 

errors. In order to quote a systematic error on our final results (see Section 6.1) for fs, /fs., 

MB. - MB* and f~, we have assumed that the percentage errors for the other fi values are 

the same as those obtained at 0 = 5.9 on the 163 box. 

5.3 Extrapolation to ~~ 

To investigate the sensitivity of the chirally extrapolated mass and f-values to the fitting 

range in n, we have done a detailed study of the dependence of the results of the global (in 

n) chi-square fit (26) on the n values chosen, for the case /3 = 5.9 on a 163 lattice. For this 

run, correlators were studied at n values of 0.154, 0.156, 0.157, 0.158, and 0.159 (with the 

critical K C =0.15975). The fits were done using a Euclidean time window T< = 3,T, = 10. 

By taking various subsets of n values to perform the chiral fit (cf. discussion at end of 

Section(S)), we can probe the sensitivity of our results to the assumption of linearity of 

mass and f-values in K-‘. The central values obtained from the fit (together with the 

associated dati.dicd errors) are displayed in Table 10. The range of kappa values used in 

the fit is indicated in the first column using the abbreviated notation K = 0.152 -+ z (thus: 

467 indicates that the extrapolation to K, was made using n values 0.154,0.156, and 0.157). 

Referring to Table 10, we see that the variation in the extrapolated ground state mass 

and f-value obtained by choosing three sliding windows of adjacent kappa values are in every 

case considerably smaller than the associated statistical errors. For the mass, the central 

values vary by about 50 % of the statistical error. while for the f-value the variation is 20-25 

% of the statistical error. Even totally nonoverlapping fits (rows 467 and 89) give central 

values lying well within the statistical errors. The statistical errors of course tend to increase 

as we approach n, ; it is more difficult to detect a systematic trend in the central values 

because the dominant errors are statistical. For the slopes (derivatives with respect to K-*) 

needed for the extraction of B, properties, the situation is similar. Aside from the 89 fit, 

which gives a poor determination of the slopes, the central values for all the subsets of K’S 

are well within a standard deviation of the full fit to all five kappa values. 

We may conclude from the preceding that, as in the case of finite volume corrections, 
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Table 10: Estimate of systematic effects in chiral extrapolation. Listed are the 
values at K, and slopes (as a function of ~-l - K,‘) of the ground state energy and 
decay constant obtained from a fit to subsets of the five K values, .154, .156. .157, 
.158. and .159. First column indicates the set of K’S used by listing the last digit of 
each K included. 

n range 

467 

678 

c 

789 

89 

6789 

46789 

El(O) 1 E:(O) 
.643( 10) 

.645( 10) 

.642( 13) 

.640( 15) 

.643( 12) 

.643( 11) 

.319( 22) 

.303(36) 

.332( 72) 

.385( 123) 

.321(52) 

.320(33) 

jB(O) 
.464( 29) 

.463( 29) 

.458( 36) 

.453(41) 

.459(33) 

.460(31) 

Am x2/dof 
.689( 68) 1.03 

.698( 110) 0.96 

.744(202) 0.87 

.832(346) 0.84 

.725( 146) 0.89 

.700(95) 0.92 

nonlinearities in the chirai extrapolation are not an important source of systematic error in 

our results. In order to arrive at an actual estimate of the chiral extrapolation contribution 

to the total systematic error we have taken the variation in the 3-kappa fits in Table(l0) (i.e 

rows labelled 467,678, and 789) which have a reasonable lever arm in l/n, and fairly small 

statistical errors, as an indication of the extrapolation error to n, (i.e. in fBu and MB,). 

As we measure quite close to n, (at n =0.157), there is effectively no extrapolation error in 

the strange quark quantities. We assume that the chiral extrapolation at 8=5.9 is typical of 

other 8 values. In this way a chiral extrapolation part of the total systematic errors quoted 

in Section 6.1 can be obtained. 

5.4 Scale Errors 

In order to quote physical values of masses and decay constants, one must select a particular 

dimensionful quantity to define the scale. In our discussion, we have taken the values of 

a-l obtained from the lP-IS charmonium splitting(431 at P = 5.7,5.9, and 6.1. Our choice 

of 0-l at p = 6.3 is obtained by evolving from /3 = 6.1 via one-loop asymptotic freedom. 

(The same value of a-l = 3.08 is also obtained from our value for mp.) Other possible 

choices for the scale-defining parameter include string tension, rho mass, and fn. Since the 

quoted values of the decay constant fB include a factor of a 3, it is particularly important to 

estimate the possible systematic error in our results arising from uncertainty in the overall 
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scale at each ,L? value. In Fig. 15 we have plotted the scale obtained from mP (circles and 

filled circles), fn (squares), and string tension (diamonds and filled diamonds) relative to the 

scales chosen in this paper (Table 1). Also included on the plot are points (filled squares) 

obtained from lattice calculations of the deconfinement temperature T, [38]. Since the 

experimental value of T, is not known, these calculations only give a relative determination 

of the scale at different P’s. (The absolute scale for these points has been chosen to be 

equal to that in Table 1 at /3 = 6.3, which corresponds to a deconfinement temperature of 

kT, = 264 MeV.) The values for mP are from GFll (401 (filled circles) and from our data 

(Table A)(circles), while the string tension is a combination of our results at 5.7, 5.9, and 

6.1 (diamonds) and those of Ref. [39) at 6.0, 6.2, and 6.4 (filled diamonds). For the latter 

points, the charmonium scales were estimated from Table 1 by linear interpolation in ln a. 

The values for fw are taken from Table A. 

1.2 - 

+ KBS 
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. pGF11 
0 P 
0 
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5.6 5.8 6 6.2 6.4 

P 

Figure 15: Scales obtained from rrzP (circles and filled circles), fx (squares). string 
tension (diamonds and filled diamonds), and deconfinement temperature T, (filled 
squares) relative to the scales in Table 1. Our data is denoted by open symbols. 

51 



The trend exhibited by the data in Fig. 15 indicates a significant scale discrepancy in 

the range p = 5.7 to 6.0, with the mp scale being about lo-20% higher and the string- 

tension scale about lo-15% lower than charmonium. For p 2 6.2, the scales appear to 

converge to much better agreement, with deviations of 5 5%. This suggests that much of 

the discrepancy at lower p is due to finite lattice spacing effects, as opposed to being an effect 

of the quenched approximation. (Discrepancies which do not go away in the scaling limit 

can be ascribed to the neglect of closed quark loops.) The data shown in Fig. 1 illustrates 

that, over the entire range of p, the charmonium scale differs little from a weighted average 

of the other choices. This provides some additional confidence in our choice of scales. To 

estimate the scale error on our heavy-light results. we have used the charmonium scale errors 

quoted in Ref. [43] (which include both statistics and systematics). For 4 = 6.3 we have 

taken a conservative scale error estimate of 5%, based on the spread of values shown in Fig. 
.- 13. 

Our final results for MB, - MB, and fBa (f&/f& is dimensionless) quoted below 

are therefore subject to a 5% and 7% error (resp.), assuming that continuum extrapolated 

objects are determined primarily by the larger ,!? values where the scale discrepancy is small. 

The larger error for fn arises from the fact that the quantity computed on the lattice scales 

like u3j2. 

5.5 Extrapolation to the continuum 

By far the largest systematic error in our calculations arises in the extrapolation of the fs 
results to zero lattice spacing. In comparison, the systematic errors incurred from working 

on a finite volume lattice, at finite light quark mass, or even (very probably) the neglect 

of quark loops are negligible. The difficulties here are both intrinsic and practical. On 

the one hand, the detailed form of the lattice spacing dependence of lattice quantities is 

generally rather complicated (involving logarithmic as well as power dependence on the 

lattice spacing), in contrast to the relatively well understood structure of the chiral or finite 

volume extrapolations. On the other hand, reduction of the lattice spacing by a factor of 

2 requires increasing the lattice volume 16-fold (if we maintain fixed physical space-time 

volume). 

These issues are particularly important in the case of heavy meson decay constants. We 

find that the lattice spacing dependence for fB in the static limit is considerably stronger 
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Figure 16: fB at K = IE, as a function of lattice spacing. The scales and renor- 
malization constants used are given in Table 1. The solid line is the best linear fit. 
The dashed line is a quadratic (a2) fit used to estimate systematic error in a - 0 
extrapolation. (See Section 5.5) 
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than for f*. This is illustrated in Fig. 16. Although our calculations have led to reasonably 

precise results at finite a, quoting a systematic error on the continuum extrapolated result 

clearly requires an investigation of the variation induced by alternative fitting procedures. 

Table 11: Comparison of continuum values for a linear vs. a quadratic fit to the 
a-dependence of physical quantities. Values shown are the fitted a = 0 values of 
fB, MB, - MB., and f&/f&, and the x2 per degree of freedom for each fit. Errors 
shown are extrapolated statistical errors. 

fit MMeV) x2/dof MB, -MB, x2/dof fB./fB. x2/dof 

co + ClU 188(23) .46/2 86(12) 2.4/2 1.22(4) 2.412 

QJ + c*a2 214(13) .40/2 80(7) 2.3/2 1.21(2) 2.2/2 

We have investigated this variation by fitting the fs results at finite p to various func- 

tional forms for the finite a correction. In Table 11 we show the extrapolated continnum 

result for fB and the x2 per degree of freedom for the alternatives that the finite lattice 

spacing correction is of order a and of order a 2. The linear and square fits are, explicitly, 

fs(a) = 188(23) (1+ .51(19)a) MeV (43) 

fda) = 214(13) (1 + [.60(ll)a]‘) MeV (44) 

where a is in GeV-‘. For MB, - MB., the fits are 

MB. - ME,(~) = 85.8(11.7) (1 - .24(22)a) MeV (45) 

MB. - ME,(~) = 80.1(6.7) (1 - [.4i(40)a12) MeV (46) 

and 

fB,/fB,(a) = 1.216(41) (1 - .02(6)a) (47) 

fB,lfE,(4 = 1.213(23) (1 - (.16(31)a12) (48) 

These fits are shown with the data in Fig. 16. It is clear from this graph that it would 

be very difficult to distinguish between these two possibilities by calculations in the range 

p = 5.7 - 6.3, even with improved statistics and adktionai fl values. In the absence of more 

precise data at much larger 0 or a complete control of all O(a) lattice effects, we will take 

the variation of the extrapolated results in Table 11 as an estimate of the systematic error 

associated with extrapolating to a = 0. In our final result for fs, we quote the continuum 
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value obtained from the linear fit with asymmetric errors of +26 and -0 to allow for this 

extrapolation uncertainty. 
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6 Physical Results and Discussion 

6.1 Final results 

In this final section, we collect our results for f&/f&, MB, - MB,, and f& at each 

lattice spacing calculated and then present the results extrapolated to the continuum. The 

summary of results for each of the four lattice spacings studied are collected in Table 12. A 

comparison with other recently reported results follows immediately. In all cases the first 

error quoted is a statistical error obtained by the jackknife procedure described previously. 

Table 12: Final rest&s at fixed p (lattice spacing) for fB, MB, - MB,, , and f&/f& in 
the static approximation. The first error is statistical and the second is systematic. 

P fB(MeV) MB# - MB~(MW fB./fBu 

5.7 271 f 13 f 20 66f7f6 1.181 f .030 zk .012 

5.9 241 f 13 f 13 74f5f6 1.211 f .018 f .014 

6.1 215 f 21 f 14 87f9f7 1.226 f .027 f .016 

6.3 225 f 17 f 14 68 f 10 f 5 1.172 f .031 f .Oll 

The source of systematic errors varies somewhat with the quantity being computed. For 

f&/f&, the uncertainty in the scale cancels, as the ratio is a dimensionless quantity. Thus, 

for this quantity, the quoted systematic error includes finite volume and chiral extrapolation 

errors. The lattice spacing dependence of this quantity (see Fig( 7)) is very small, so we have 

not included a continuum extrapolation error. The result is 

f&/f% = 1.216 f O.O4l(stat) f O.OlG(syst) (49) 

For the mass splitting MB, - MB. the systematic errors include finite volume effects, 

the chiral extrapolation (to determine 1MB,), and an estimate of the scale error. For the 

continuum extrapolation, we quote the result obtained from the linear fit in a, and take the 

difference between the two fits shown in Table 11 as an estimate of our extrapolation error 

(+0 to -6). Combining the extrapolation error with our other systematic errors, we obtain 

the result 

MB, - MB. = 86 zt 12(stat) +i(syst) SteV. (50) 

Finally, for fB itself, there is, in addition to the usual finite volume and chiral extrap- 

olation errors, a substantial (not necessarily linear) lattice spacing dependence, as well as 
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the possibility of sizable renormalization corrections to Z at the two and higher loop level. 

These additional systematic errors are quoted separately in our final result: 

fB. = 188 f 23(stat) f 15(syst) ti’(extrap) f 14(renorm) MeV. (51) 

6.2 Comparison with other results 

There have been several recently reported studies of the heavy-light meson system in the 

static limit of quenched LQCD. In this Section we will assess the results reported here in 

comparison with these other studies. We will consider four quantities, El, the heavy-light 

ground state energy, the ME. -MB, mass splitting, f~ the ground-state decay constant, and 

the ratio f&/f&. Even before the present study, there has been some apparent disagree- 

ment among different groups over the size of fs. Some of these discrepancies can be traced 

to different choices of p and n, different definitions of the QCD length scale, and different 

evaluations of the perturbative renormalization constant 2. Since our data has provided a 

more accurate determination of the dependence on n and 0, we are able to interpolate our 

data in both variables and make a direct comparison with other groups. 

The focus of this subsection is on the lattice measurement of the ground state energy 

eigenvalue El and its matrix element with the unrenormalized local axial current operator 

on the lattice, in = ~1” (c.f. Eq.(22)). Th ese are the quantities that are extracted directly 

from the lattice heavy-light meson propagators and, for given 0 and K, are independent of 

the choices for length scale and renormalization constant. 

First consider the ground state energy El. In Section 4.1 it was shown that the K 

and a dependence of El is most easily described by introducing the naive quark mass 

mp = (2m)-1 - (2n,o)-‘. The values of tic for p = 5.74 and 6.26 are taken from [14] while 

that at p = 6.0 is taken from [12). The n, values for 4 = 5.7,5.9,6.1, and 6.3 are from our 

own data. The values for the scale a-l are subject to somewhat more uncertainty. For 5.7. 

5.9, 6.1, and 6.3, the scales we have used are given in Table 1. In order to have a reasonably 

self-consistent set of scales, the remaining values for a-l are obtained from those at 5.7, 5.9, 

and 6.1 by a simple linear interpolation or extrapolation in In a. Note that we are only using 

the value of a- ’ here to define the naive quark mass mq. The numerical values of El and 

Jo are obtained directly from the lattice propagators and do not depend on choice of scale. 

Thus, our comparison of data is insensitive to an overall, uniform change of scales. The 
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Figure 17: Ground state energy, in lattice units, at K: = K=, versus lattice spacing. 
Points at the same 4 have been slightly displaced for readability. 

values for the ground state energy El (in lattice units), extrapolated to ncr from the various 

studies are plotted in Fig.17. We conclude from these plots that all the data are in reasonable 

agreement, both on the magnitude of El and on its a dependence. This is not surprising 

since, for any reasonably well-chosen smearing function, the value of El is obtained fairly 

unambiguously from the smeared-smeared correlator. Our multistate analysis provides a 

value of El with considerably smaller errors than a single-channel analysis (note the much 

smaller error bars for the ACPMAPS results), but the results are completely consistent with 

previous calculations. 

Results from various groups for the MB, - MB, splitting are compared with ours in 

Fig 18. Again, the accurate determination of the slope of the ground state energy with 

respect to l/s is the key to the much smaller error bars shown for the ACPMAPS results. 

However, the results are basically consistent within errors. For this quantity, the lattice 

spacing dependence is very mild. 

Results from various groups for the ratio of decay constants fB,/f& are compared with 

ours in Fig 19. 

In contrast with the situation for El or MB, - &I&, there is significant disagreement on 

the value of FB among the various studies, even after correcting for the different values of K 
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Figure 18: Mass splitting, MB, - MB., in physical units, versus lattice spacing. 
Points at the same a have been slightly displaced for readability. 
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Figure 19: Comparison of fs,/f~” vs. lattice spacing for present results and other 
recent works. Points at the same a have been slightly displaced for readability. 
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Figure 20: Comparison of f~ vs. lattice spacing for present results and other recent 
works. Points at the same a have been slightly displaced for readability. 

and ,L?. Results from references (44, 41, 12, 14, 491 are compared with our data in figure 20. 

This is a plot of jBoq312 against lattice spacing a, so that we can compare ‘raw’ lattice 

results without renormalisation factors. The results of [12] (at P = 6.3) and 149) are in good 

agreement with ours, while [44, 41, 141 report substantially larger values. 

We believe that the discrepancies can be traced primarily to the incomplete isolation 

of the ground state with the sources chosen. Observe in particular that the result in (491, 

where a variational method is used to isolate the ground state, is in good agreement with 

us. Sensitivity of the apparent value of fB to the form of the source has been emphasized 

in [50]. 

6.3 Future Studies 

We have presented results for the decay constant fs and for masses of low-lying heavy-light 

states in the static approximation. The analysis procedure introduces several improvements 

over previous smearing methods. First, the success of the RQM in reproducing the measured 

lattice wave functions is exploited by using the RQM to construct not only an accurate 

ground state wave function, but also a set of orthonormal excited state smearing functions. 

Second, we make full use of the information contained in the matrix of smeared-smeared and 
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smeared-local correlators, including both ground state and excited state smearing functions 

at each end. Our method provides much greater control over systematic errors from higher 

state contamination, because of the fact that the source smearing functions are tuned directly 

to the lattice wave functions, without regard to the behavior of the effective mass plots. The 

appearance of long plateaus in the SS and SL plots at the same value of effective mass is thus 

strong evidence that the systematic error from higher states has been largely eliminated. 

We will report the application of our methods for heavy-light mesons to the spectrum of 

radial and orbital excitations for heavy-light systems and the B parameter in forthcoming 

papers. 

We expect to be able to improve the accuracy of the present results for the MB, - 

MB. and fa,/fn, by using larger ensembles. There are two other sources of systematic 

UnCertahty in Our results for fBe Use of the Wilson action for the light quarks implies 

lattice spacing corrections in O(a) and the large one loop renormalization for the axial 

current suggests that the two loop correction may be sizable. Study of these effects will be 

required to substantially improve the error on fs. 
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A Light Hadron Results 

In this Appendix we report the results for the light quark sector which we have used to set the 

parameters for the heavy-light meson properties. First consider the light-light pseudoscalar 

meson mass as a function of the light quark hopping parameters. This serves to determine 

the critical hopping parameter at each value of P studied. Using the physical K mass, we 

also establish the correct hopping parameter for the strange quark. (The small effect from 

the nonzero up or down quark mass has also been included in our results.) In addition to 

determining the light quark hopping parameters from the pseudoscalar meson masses, the 

meson propagators have also been analyzed to obtain the values of t and mP. All of the 

results discussed here for the light hadron parameters have been extracted from local qrj 

operators. An analysis of light meson parameters using smeared sources in Coulomb gauge 

is in progress and will be reported elsewhere. 

Let the hopping parameters for the two valence quarks in the light meson be denoted 

by ~1 and IQ, and denote the pseudoscalar meson mass by mp. All of our data is consistent 

with a linear dependence of m’p on nI -’ and ~2’. The results can be expressed in terms of 

the parameters C and K~ of the linear fit 

(mpa)2 = C (nil + ~2~ - 2~;‘) (52) 

The results for the four p values studied are given in Table 13. Using the scales in Table 1, 

the naive quark masses, defined by 

1 1 
m9 = G 

-- 
2n,a (53) 

are also listed in Table 13. (Here, up and down quarks are taken to be degenerate in mass.) 

A plot of m’p vs. quark mass (defined in Eq. (53)) is shown in Fig. 21. For 4 = 5.7.6.1, and 

6.3 the values of mpa were obtained using equal quark masses, ril = ~2. For P = 5.9 several 

combinations of unequal quark mass values (open circles in Fig.21) were used to check the 

validity of Eq.(52). For fi = 5.9, in addition to the main run on a 163 x 32 lattice. in order 

to investigate finite volume effects, we have also carried out Monte Carlo runs on 123 x 24 

and 203 x 40 lattices. The results labeled 5.9(co) l are the infinite volume values obtained 

by fitting all three box sizes to the functional form derived by Luscher, as discussed in Sec. 

5.2. 

In Table 13, the values for C and n, are independent of the scale chosen for a-‘. The 
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Figure 21: rnz vs. naive quark mass for 0 = 5.7.5.9,6.1, and 6.3. The vertical scales 
for 5.9, 6.1, and 6.3 are offset by multiples of 0.2 for display purposes. Points labeled 
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Table 13: Light quark hopping parameters obtained from light pseudoscalar meson 
mass measurements. Values are shown for each runt as well as the infinite volume 
extrapolated value at p = 5.9. C is the slope of the pseudoscalar (mass)2 as a 
function of n- l. The last two columns give the strange and up quark masses x 2~. 
Errors are statistical. 

P 4 

5.7 .16914( 10) 

5.9 .15972( 14) 

5.9 .15975(6) 

5.9 .15981(4) 

5.9( 00) .15980(4) 

6.1 .15496(3) 

6.3 .15178(4) 

c 
.?03( 10) 

.615( 14) 

.609(g) 

.591(8) 

.597( 7) 

.480( 11) 

.395( 10) 

n, 
-1 _ .-l 

c 

.2533( 36) 

.1209(27) 

.1221(18) 

.1258(17) 

.1245( 14) 

.0832( 19) 

.0613( 15) 

44 
-1 _ K-l 

c 

.01024( 15) 

.00489( 11) 

.00494( 7) 

.00509( 7) 

.00504(6) 

.00336(8) 

.00248(6) 

remaining columns are computed using the scales in Table 1. The errors quoted in Table 13 

are statistical only, and do not include the uncertainty associated with the choice of a-‘. 

The uncertainty arising from the scale determination, along with other sources of error, will 

be discussed in Section 6. 

Although they are not used in the body of the paper, we also briefly discuss our results 

for the rho mass and the pion decay constant. We again emphasize that all of the results 

discussed here are obtained from light quark propagators with h-function sources. The 

results are thus subject to possible systematic errors from higher state contamination. This 

is not a problem in measuring the pion and kaon masses discussed above, but it becomes 

more of a difficulty for mp and fr measurements. In order to determine fl, one must 

calculate both the propagator with a pseudoscalar (c&q) source at each end (PP). and the 

propagator with a pseudoscalar source at one end and an axial vector (Qys-yoq) source at the 

other end (PA). (Note: One may also use the (AA) propagator with an axial vector source at 

both ends. However, since the vacuum to one pion matrix element of the axial vector source 

contains an explicit factor of mrrr the pion pole residue in the (AA) propagator vanishes 

more rapidly than that of the (PA) propagator in the chiral limit, making it more difficult 

to measure accurately.) The (PP) and (PA) propagators are fit to a single exponential in 

the time ranges shown. Table A summarizes our results for light hadron parameters. Again, 
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Table 14: Results for light-light mesons. Meson propagators were fit to a sin- 
gle exponential over time window AT. Result for frr includes a tadpole improved 
renormalization factor, computed in Ref. [20]. 

0 - 
5.7 

AT 

6-10 

5.9 8-12 

6.1 lo-16 

6.3 12-18 

- 

K m,a %a f na 
.161 .649( 3) .787(2) .145(3) 

.165 .456( 5) .675( 5) .133(4) 

t1667 .351(8) .629( 15) .115(6) 

.168 .237( 13) .586(44) .102( 11) 

Kc 0 .566(11) .108( 14) 

.154 .5i7( 2) .619(2) .104(2) 

.156 .426(3) .546(3) .093(2) 

.157 .360( 2) .513(3) .086(Z) 

.158 .288(3) .479( 5) .078(2) 

.159 .195(4) .444( 12) .072(4) 

KC 0 .418(4) .067(2) 

.151 .409(3) .482(3) .081(2) 

.153 .276( 4) .401(4) .069( 2) 

,154 .196(3) .361(8) .061(2) 

.1545 .137( 5) .341( 19) .056( 4) 

4? 0 .324( 8) .055(2) 

.1500 .249(3) .331(3) .054(2) 

.1510 .160(6) .283(S) .045(4) 

.1513 .126(6) .269( 7) .041(4) 

.1515 .099( 5) .260(11) .038(11) 

47 0 .246(8) .037(3) 
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Table 15: Light-light meson results at /3 = 5.9 for lattice sizes 123 x24(e), 163 x32(c), 
and 203 x 40(f). Result for fn includes the tadpole improved renormalization factor, 
computed in Ref. [20]. 

P 

5.9(e) 

5.9(c) 

5.9(f) 

AT 

8-12 

8-12 

8-12 

K 

.154 

.157 

.158 

.159 

% 

.154 

.157 

.158 

.159 

Kc 

.154 

.157 

.158 

.159 

nc 

ma. 

.535(4) 

.364(4) 

.306(g) 

.198(33) 

0 

.534(3) 

.364(4) 

.292(4) 

.188(8) 

0 

.525(2) 

.358(3) 

.288(3) 

.196(4) 

0 

me f *a 
.618(4) .105(3) 

.505(7) .083(4) 

.475(15) .080(4) 

.375(77) .075(17) 

.403(14) .067(S) 

.622(2) .106(3) 

.508(S) .087(3) 

.469(8) .079(4) 

.440(27) .067(8) 

.407(8) .067(4) 

.617(2) .103(2) 

.515(4) .085(Z) 

.482(S) .078(3) 

.442(12) .Oi3(4) 

.423(S) .068(2) 
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the errors quoted are purely statistical. Some systematic errors are expected particularly 

for fr, for which a stable mass plateau in the (PA) propagator with the same mass as 

the (PP) propagator was not generally achieved. An attempt was made to compensate for 

this by fitting the (PA) propagator with the msss fixed to be equal to that of the (PP) 

propagator. It is clear from these results that a much better determination of fr from our 

data will be possible when smeared operators are employed. The rho propagators exhibit 

reasonable plateaus in the time intervals shown in Table A, but a study of the variation of 

the results with different AT windows indicates that a systematic error of from 1 to 2 times 

the statistical errors cannot be ruled out. The values of fra given in Table A include the 

perturbative renormalization constants computed in Ref. [20]. For P = 5.9, the results in 

Table A are the infinite volume extrapolated results from the three Monte Carlo runs on 123 

(e), 163 (c), and 203 (f) boxes (except for n = .156 which was done only on the 163 box). 

The results on each size box are listed separately in Table A. In the main analysis of this 

paper, the only light meson parameters we will use are the hopping parameters determined 

from the pseudoscalar masses. Since the (PP) propagator always exhibits a stable mass 

plateau, these parameters are well-determined and should be relatively free of systematic 

error from higher states. 
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B Multistate Extraction of Meson Wavefunctions 

A particularly graphic illustration of the power of the smearing technique in reducing 

the contamination of higher states is obtained by examining the time development of the 

Coulomb gauge Bethe-Salpeter wavefunction of a static-light meson beginning with either 

(a) the RQM smeared source defined in equation (l?), or (b) a cube smeared source [41]. 

In the first case, we extract 

*LFjs(R,T) =< Olq(R, v2(0, T)l*(a), 0 > (54) 

for the ground state (a=l) at small Euclidean times. We have done the comparison for the 

case /3 z5.9, K =0.159, on a 163 lattice. In Fig.22 the evolution of the wavefunction using 

a source smeared with the ground state wavefunction of the RQM (with constituent mass 

~=0.12) is shown for Euclidean times T=1,2 and 4. It is apparent that the wavefunction 

has reached its asymptotic value to very good accuracy already at time slice 2, with little 

further change at T=4 (in fact, the overlap of the wavefunction at T=2 with that at T=4 

is 0.9986!). In Fig.23 the corresponding evolution (again for Euclidean times T=1,2 and 4) 

is shown for a source smeared over a cube of width 7 lattice spacings. Here the convergence 

is much slower, with the pointwise convergence near the origin particularly tardy. 

Although the use of a single smearing function obtained from the RQM is adequate 

to the task of extracting the ground-state Bethe-Salpeter wavefunction, even the improved 

smearing given by the RQM is not sufficient if we wish to do the same for the higher excited 

states in a given channel. In Section 4 we showed how to define optimized smeared states 

1 &A > in which the admixture of all but one (the A’th) of the first M meson states in 

a given channel is tuned to zero. For example, taking M=3 at p=5.9, k=O.159 on a 163 

lattice, one finds that the choice of smearing function (cf. Sect 3.2,Eq (23)) 

1 dJ2) >= 0.03 1 cp(‘) > +0.82 1 *(*) > +0.57 1 ,p@’ > (55) 

produces an optimized first excited state in the sense that admixtures of the ground and 

second excited state are tuned out (based on a fit of the form (22)) with T<=2,T,=7). The 

use of such an optimized smearing is crucial if we wish to extract the correct Bethe-Salpeter 

wavefunction of the first radial excited state near the origin. Any sizable admixture of the 

exact meson ground-state will otherwise dominate the small r region of the wavefunction at 

large Euclidean time, before the higher (2nd, 3rd,etc) states have decayed away. In Figure 

68 



24 we show this phenomenon with a Bethe-Salpeter wavefunction Oss(R,T) defined as 

*Bs(R,T) z< 0 ) q(itT)Q(O,T) I *‘*‘,O > (56) 

The wavefunction (renormalized to unit norm) is plotted for Euclidean times T=1,2,4, and 

6. There is a steady upward drift of the wavefunction at the origin as T increase to 4, but 

by time slice 6 the influence of the ground state is clearly apparent as the latter begins 

to dominate the evolved meson state. It would clearly be very difficult to draw any firm 

conclusions about the behavior of the excited state wavefunction close to the origin from 

these measurements. 

On the other hand, using the optimized smearing found above (55), and computing 

S’;$(R, T) SC 0 I q(d, T)Q(O, T) I &(*), 0 > (57) 

one finds (Fig.25 shows the optimized wavefunction for times T=1,2,3) a rapid convergence 

to an asymptotic shape by the third time slice, giving a value for the wavefunction at the 

origin ~0.44, as compared to a maximal value eO.36 obtained at T=4 from Eq (56) before 

convergence is lost. Eventually, of course, the ground state will dominate in this case also, 

but by using the optimized state, we correctly extract the exact Bethe-Salpeter wavefunction 

for the excited state before the ground state contamination has a chance to become sizable. 
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